Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and EHR for FREE!

What is Quality in Health Care? (Part 2 of 2)

Posted on February 10, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://radar.oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The first part of this article described different approaches to quality–and in fact to different qualities. In this part, I’ll look at the problems with quality measures, and at emerging solutions.

Difficulties of assessing quality

The Methods chapter of a book from the National Center for Biotechnology Information at NIH lays out many of the hurdles that researchers and providers face when judging the quality of clinical care. I’ll summarize a few of the points from the Methods chapter here, but the chapter is well worth a read. The review showed how hard it is to measure accurately many of the things we’d like to know about.

For instance, if variations within a hospital approach (or exceed) the variations between hospitals, there is little benefit to comparing hospitals using that measure. If the same physician gets wildly different scores from year to year, the validity of the measure is suspect. When care is given by multiple doctors and care teams, it is unjust to ascribe the outcome to patient’s principal caretaker. If random variations outweigh everything, the measure is of no use at all. One must also keep in mind practical considerations, such as making sure the process of collecting data would not cost too much.

Many measures apply to a narrow range of patients (for instance, those with pneumonia) and therefore may be skewed for doctors with a relatively small sample of those patients. And a severe winter could elevate mortality from pneumonia, particularly if patients have trouble getting adequate shelter and heat. In general, “For most outcomes, the impacts of random variation and patient factors beyond providers’ control often overwhelm differences attributable to provider quality.” ACMQ quality measures “most likely cannot definitively distinguish poor quality providers from high quality providers, but rather may illuminate potential quality problems for consideration of further investigation.”

The chapter helps explain why many researchers fall back on standard of care. Providers don’t trust outcome-based measures because of random variations and factors beyond their control, including poverty and other demographics. It’s hard even to know what contributed to a death, because in the final months it may not have been feasible to complete the diagnoses of a patient. Thus, doctors prefer “process measures.”

Among the criteria for evaluating quality indicators we see, “Does the indicator capture an aspect of quality that is widely regarded as important?” and more subtly, “subject to provider or public health system control?” The latter criterion heed physicians who say, “We don’t want to be blamed for bad habits or other reasons for noncompliance on the part of our patients, or for environmental factors such as poverty that resist quick fixes.”

The book’s authors are certainly aware of the bias created by gaming the reimbursement system: “systematic biases in documentation and coding practices introduced by awareness that risk-adjustment and reimbursement are related to the presence of particular complications.” The paper points out that diagnosis data is more trustworthy when it is informed by clinical information, not just billing information.

One of the most sensitive–and important–factors in quality assessment is risk adjustment, which means recognizing which patients have extra problems making their care more difficult and their recovery less certain. I have heard elsewhere the claim that CMS doesn’t cut physicians enough slack when they take on more risky patients. Although CMS tries to take poverty into account, hospital administrators suspect that institutions serving low-income populations–and safety-net hospitals in particular–are penalized for doing so.

Risk adjustment criteria are sometimes unpublished. But the most perverse distortion in the quality system comes when hospitals fail to distinguish iatrogenic complications (those introduced by medical intervention, such as infections incurred in the hospital) from the original diseases that the patient brought. CMS recognizes this risk in efforts such as penalties for hospital-acquired conditions. Unless these are flagged correctly, hospitals can end up being rewarded for treating sicker patients–patients that they themselves made sicker.

Distinguishing layers of quality

Theresa Cullen,associate director of the Regenstrief Institute’s Global Health Informatics Program, suggests that we think of quality measures as a stack, like those offered by software platforms:

  1. The bottom of the stack might simply measure whether a patient receive the proper treatment for a diagnosed condition. For instance, is the hemoglobin A1C of each diabetic patient taken regularly?

  2. The next step up is to measure the progress of the first measure. How many patients’ A1C was under control for their stage of the disease?

  3. Next we can move to measuring outcomes: improvements in diabetic status, for instance, or prevention of complications from diabetes

  4. Finally, we can look at the quality of the patient’s life–quality-adjusted life years.

Ultimately, to judge whether a quality measure is valid, one has to compare it to some other quality measure that is supposedly trustworthy. We are still searching for measures that we can rely on to prove quality–and as I have already indicated, there may be too many different “qualities” to find ironclad measures. McCallum offers the optimistic view that the US is just beginning to collect the outcomes data that will hopefully give us robust quality measures, Patient ratings serve as a proxy in the interim.

When organizations claim to use quality measures for accountable care, ratings, or other purposes, they should have their eyes open about the validity of the validation measures, and how applicable they are. Better data collection and analysis over time should allow more refined and useful quality measures. We can celebrate each advance in the choices we have for measures and their meanings.

What is Quality in Health Care? (Part 1 of 2)

Posted on February 9, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://radar.oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Assessing the quality of medical care is one of the biggest analytical challenges in health today. Every patient expects–and deserves–treatment that meets the highest standards. Moreover, it is hard to find an aspect of health care reform that does not depend on accurate quality measurement. Without a firm basis for assessing quality, how can the government pay Accountable Care Organizations properly? How can consumer choice (the great hope of many reformers) become viable? How can hospitals and larger bodies of researchers become “learning health systems” and implement continuous improvement?

Ensuring quality, of course, is crucial in a fee-for-value system to ensure that physicians don’t cut costs just by withholding necessary care. But a lot of people worry that quality-based reimbursement plans won’t work. As this article will show, determining what works and who is performing well are daunting tasks.

A recent op-ed claims that quality measures are adding unacceptable stress to doctors, that the metrics don’t make a difference to ultimate outcomes, that the variability of individual patients can’t be reflected in the measures, that the assessments don’t take external factors adequately into account, and that the essential element of quality is unmeasurable.

Precision medicine may eventually allow us to tailor treatments to individual patients with unique genetic prints. But in the meantime, we’re guessing a lot of the time we prescribe drugs.

The term quality originally just distinguished things of different kinds, like the Latin word qualis from which it is derived. So there are innumerable different qualities (as in “The quality of mercy is not strained”). It took a while for quality to be seen as a single continuum, as in an NIH book I’ll cite later, which reduces all quality measures to a single number by weighting different measures and combining them. Given the lack of precision in individual measures and the subjective definitions of quality, it may be a fool’s quest to seek a single definition of quality in health care.

Many qualities in play
Some of the ways to measure quality and outcomes include:

  • Longitudinal research: this tracks a group of patients over many years, like the famous Framingham Heart Study that changed medical care. Modern “big data” research carries on this tradition, using data about patients in the field to supplement or validate conventional clinical research. In theory, direct measurement is the most reliable source of data about what works in public health and treatment. Obvious drawbacks include:

    • the time such studies take to produce reliable results

    • the large numbers of participants needed (although technology makes it more feasible to contact and monitor subjects)

    • the risk that unknown variations in populations will produce invalid results

    • inaccuracies introduced by the devices used to gather patient information

  • Standard of care: this is rooted in clinical research, which in turn tries to ensure rigor through double-blind randomized trials. Clinical trials, although the gold standard in research, are hampered by numerous problems of their own, which I have explored in another article. Reproducibility is currently being challenged in health care, as in many other areas of science.

  • Patient ratings: these are among the least meaningful quality indicators, as I recently explored. Patients can offer valuable insights into doctor/patient interactions and other subjective elements of their experience moving through the health care system–insights to which I paid homage in another article–but they can’t dissect the elements of quality care that went into producing their particular outcome, which in any case may require months or years to find out. Although the patient’s experience determines her perception of quality, it does not necessarily reflect the overall quality of care. The most dangerous aspect of patient ratings, as Health IT business consultant Janice McCallum points out, comes when patients’ views of quality depart from best practices. Many patients are looking for a quick fix, whether through pain-killers, antibiotics, or psychotropic medications, when other interventions are called for on the basis of both cost and outcome. So the popularity of ratings among patients just underscores how little we actually know about clinical quality.

Quality measures by organizations such as the American College of Medical Quality (ACMQ) and National Committee for Quality Assurance (NCQA) depend on a combination of the factors just listed. I’ll look more closely at these in the next part of this article.

Significant Articles in the Health IT Community in 2015

Posted on December 15, 2015 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://radar.oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Have you kept current with changes in device connectivity, Meaningful Use, analytics in healthcare, and other health IT topics during 2015? Here are some of the articles I find significant that came out over the past year.

The year kicked off with an ominous poll about Stage 2 Meaningful Use, with implications that came to a head later with the release of Stage 3 requirements. Out of 1800 physicians polled around the beginning of the year, more than half were throwing in the towel–they were not even going to try to qualify for Stage 2 payments. Negotiations over Stage 3 of Meaningful Use were intense and fierce. A January 2015 letter from medical associations to ONC asked for more certainty around testing and certification, and mentioned the need for better data exchange (which the health field likes to call interoperability) in the C-CDA, the most popular document exchange format.

A number of expert panels asked ONC to cut back on some requirements, including public health measures and patient view-download-transmit. One major industry group asked for a delay of Stage 3 till 2019, essentially tolerating a lack of communication among EHRs. The final rules, absurdly described as a simplification, backed down on nothing from patient data access to quality measure reporting. Beth Israel CIO John Halamka–who has shuttled back and forth between his Massachusetts home and Washington, DC to advise ONC on how to achieve health IT reform–took aim at Meaningful Use and several other federal initiatives.

Another harbinger of emerging issues in health IT came in January with a speech about privacy risks in connected devices by the head of the Federal Trade Commission (not an organization we hear from often in the health IT space). The FTC is concerned about the security of recent trends in what industry analysts like to call the Internet of Things, and medical devices rank high in these risks. The speech was a lead-up to a major report issued by the FTC on protecting devices in the Internet of Things. Articles in WIRED and Bloomberg described serious security flaws. In August, John Halamka wrote own warning about medical devices, which have not yet started taking security really seriously. Smart watches are just as vulnerable as other devices.

Because so much medical innovation is happening in fast-moving software, and low-budget developers are hankering for quick and cheap ways to release their applications, in February, the FDA started to chip away at its bureaucratic gamut by releasing guidelines releasing developers from FDA regulation medical apps without impacts on treatment and apps used just to transfer data or do similarly non-transformative operations. They also released a rule for unique IDs on medical devices, a long-overdue measure that helps hospitals and researchers integrate devices into monitoring systems. Without clear and unambiguous IDs, one cannot trace which safety problems are associated with which devices. Other forms of automation may also now become possible. In September, the FDA announced a public advisory committee on devices.

Another FDA decision with a potential long-range impact was allowing 23andMe to market its genetic testing to consumers.

The Department of Health and Human Services has taken on exceedingly ambitious goals during 2015. In addition to the daunting Stage 3 of Meaningful Use, they announced a substantial increase in the use of fee-for-value, although they would still leave half of providers on the old system of doling out individual payments for individual procedures. In December, National Coordinator Karen DeSalvo announced that Health Information Exchanges (which limit themselves only to a small geographic area, or sometimes one state) would be able to exchange data throughout the country within one year. Observers immediately pointed out that the state of interoperability is not ready for this transition (and they could well have added the need for better analytics as well). HHS’s five-year plan includes the use of patient-generated and non-clinical data.

The poor state of interoperability was highlighted in an article about fees charged by EHR vendors just for setting up a connection and for each data transfer.

In the perennial search for why doctors are not exchanging patient information, attention has turned to rumors of deliberate information blocking. It’s a difficult accusation to pin down. Is information blocked by health care providers or by vendors? Does charging a fee, refusing to support a particular form of information exchange, or using a unique data format constitute information blocking? On the positive side, unnecessary imaging procedures can be reduced through information exchange.

Accountable Care Organizations are also having trouble, both because they are information-poor and because the CMS version of fee-for-value is too timid, along with other financial blows and perhaps an inability to retain patients. An August article analyzed the positives and negatives in a CMS announcement. On a large scale, fee-for-value may work. But a key component of improvement in chronic conditions is behavioral health which EHRs are also unsuited for.

Pricing and consumer choice have become a major battleground in the current health insurance business. The steep rise in health insurance deductibles and copays has been justified (somewhat retroactively) by claiming that patients should have more responsibility to control health care costs. But the reality of health care shopping points in the other direction. A report card on state price transparency laws found the situation “bleak.” Another article shows that efforts to list prices are hampered by interoperability and other problems. One personal account of a billing disaster shows the state of price transparency today, and may be dangerous to read because it could trigger traumatic memories of your own interactions with health providers and insurers. Narrow and confusing insurance networks as well as fragmented delivery of services hamper doctor shopping. You may go to a doctor who your insurance plan assures you is in their network, only to be charged outrageous out-of-network costs. Tools are often out of date overly simplistic.

In regard to the quality ratings that are supposed to allow intelligent choices to patients, A study found that four hospital rating sites have very different ratings for the same hospitals. The criteria used to rate them is inconsistent. Quality measures provided by government databases are marred by incorrect data. The American Medical Association, always disturbed by public ratings of doctors for obvious reasons, recently complained of incorrect numbers from the Centers for Medicare & Medicaid Services. In July, the ProPublica site offered a search service called the Surgeon Scorecard. One article summarized the many positive and negative reactions. The New England Journal of Medicine has called ratings of surgeons unreliable.

2015 was the year of the intensely watched Department of Defense upgrade to its health care system. One long article offered an in-depth examination of DoD options and their implications for the evolution of health care. Another article promoted the advantages of open-source VistA, an argument that was not persuasive enough for the DoD. Still, openness was one of the criteria sought by the DoD.

The remote delivery of information, monitoring, and treatment (which goes by the quaint term “telemedicine”) has been the subject of much discussion. Those concerned with this development can follow the links in a summary article to see the various positions of major industry players. One advocate of patient empowerment interviewed doctors to find that, contrary to common fears, they can offer email access to patients without becoming overwhelmed. In fact, they think it leads to better outcomes. (However, it still isn’t reimbursed.)

Laws permitting reimbursement for telemedicine continued to spread among the states. But a major battle shaped up around a ruling in Texas that doctors have a pre-existing face-to-face meeting with any patient whom they want to treat remotely. The spread of telemedicine depends also on reform of state licensing laws to permit practices across state lines.

Much wailing and tears welled up over the required transition from ICD-9 to ICD-10. The AMA, with some good arguments, suggested just waiting for ICD-11. But the transition cost much less than anticipated, making ICD-10 much less of a hot button, although it may be harmful to diagnosis.

Formal studies of EHR strengths and weaknesses are rare, so I’ll mention this survey finding that EHRs aid with public health but are ungainly for the sophisticated uses required for long-term, accountable patient care. Meanwhile, half of hospitals surveyed are unhappy with their EHRs’ usability and functionality and doctors are increasingly frustrated with EHRs. Nurses complained about technologies’s time demands and the eternal lack of interoperability. A HIMSS survey turned up somewhat more postive feelings.

EHRs are also expensive enough to hurt hospital balance sheets and force them to forgo other important expenditures.

Electronic health records also took a hit from ONC’s Sentinel Events program. To err, it seems, is not only human but now computer-aided. A Sentinel Event Alert indicated that more errors in health IT products should be reported, claiming that many go unreported because patient harm was avoided. The FDA started checking self-reported problems on PatientsLikeMe for adverse drug events.

The ONC reported gains in patient ability to view, download, and transmit their health information online, but found patient portals still limited. Although one article praised patient portals by Epic, Allscripts, and NextGen, an overview of studies found that patient portals are disappointing, partly because elderly patients have trouble with them. A literature review highlighted where patient portals fall short. In contrast, giving patients full access to doctors’ notes increases compliance and reduces errors. HHS’s Office of Civil Rights released rules underlining patients’ rights to access their data.

While we’re wallowing in downers, review a study questioning the value of patient-centered medical homes.

Reuters published a warning about employee wellness programs, which are nowhere near as fair or accurate as they claim to be. They are turning into just another expression of unequal power between employer and employee, with tendencies to punish sick people.

An interesting article questioned the industry narrative about the medical device tax in the Affordable Care Act, saying that the industry is expanding robustly in the face of the tax. However, this tax is still a hot political issue.

Does anyone remember that Republican congressmen published an alternative health care reform plan to replace the ACA? An analysis finds both good and bad points in its approach to mandates, malpractice, and insurance coverage.

Early reports on use of Apple’s open ResearchKit suggested problems with selection bias and diversity.

An in-depth look at the use of devices to enhance mental activity examined where they might be useful or harmful.

A major genetic data mining effort by pharma companies and Britain’s National Health Service was announced. The FDA announced a site called precisionFDA for sharing resources related to genetic testing. A recent site invites people to upload health and fitness data to support research.

As data becomes more liquid and is collected by more entities, patient privacy suffers. An analysis of web sites turned up shocking practices in , even at supposedly reputable sites like WebMD. Lax security in health care networks was addressed in a Forbes article.

Of minor interest to health IT workers, but eagerly awaited by doctors, was Congress’s “doc fix” to Medicare’s sustainable growth rate formula. The bill did contain additional clauses that were called significant by a number of observers, including former National Coordinator Farzad Mostashari no less, for opening up new initiatives in interoperability, telehealth, patient monitoring, and especially fee-for-value.

Connected health took a step forward when CMS issued reimbursement guidelines for patient monitoring in the community.

A wonky but important dispute concerned whether self-insured employers should be required to report public health measures, because public health by definition needs to draw information from as wide a population as possible.

Data breaches always make lurid news, sometimes under surprising circumstances, and not always caused by health care providers. The 2015 security news was dominated by a massive breach at the Anthem health insurer.

Along with great fanfare in Scientific American for “precision medicine,” another Scientific American article covered its privacy risks.

A blog posting promoted early and intensive interactions with end users during app design.

A study found that HIT implementations hamper clinicians, but could not identify the reasons.

Natural language processing was praised for its potential for simplifying data entry, and to discover useful side effects and treatment issues.

CVS’s refusal to stock tobacco products was called “a major sea-change for public health” and part of a general trend of pharmacies toward whole care of the patient.

A long interview with FHIR leader Grahame Grieve described the progress of the project, and its the need for clinicians to take data exchange seriously. A quiet milestone was reached in October with a a production version from Cerner.

Given the frequent invocation of Uber (even more than the Cheesecake Factory) as a model for health IT innovation, it’s worth seeing the reasons that model is inapplicable.

A number of hot new sensors and devices were announced, including a tiny sensor from Intel, a device from Google to measure blood sugar and another for multiple vital signs, enhancements to Microsoft products, a temperature monitor for babies, a headset for detecting epilepsy, cheap cameras from New Zealand and MIT for doing retinal scans, a smart phone app for recognizing respiratory illnesses, a smart-phone connected device for detecting brain injuries and one for detecting cancer, a sleep-tracking ring, bed sensors, ultrasound-guided needle placement, a device for detecting pneumonia, and a pill that can track heartbeats.

The medical field isn’t making extensive use yet of data collection and analysis–or uses analytics for financial gain rather than patient care–the potential is demonstrated by many isolated success stories, including one from Johns Hopkins study using 25 patient measures to study sepsis and another from an Ontario hospital. In an intriguing peek at our possible future, IBM Watson has started to integrate patient data with its base of clinical research studies.

Frustrated enough with 2015? To end on an upbeat note, envision a future made bright by predictive analytics.

We’re Just Getting Started with an Internet of Healthy Things (Part 1 of 3)

Posted on November 24, 2015 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://radar.oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The release of Joseph Kvedar’s book The Internet of Healthy Thingscoincided with the 15th annual symposium on Connected Health, which he runs every year and which I reported on earlier. Now, more than ever, a health field in crisis needs his pointed insights into the vision widely shared by all observers: collaborative, data-rich, technology-enabled, transparent, and patient-centered.

The promise and the imminent threat

A big part of Dr. Kvedar’s observations concern cost savings and “scaling” clinicians’ efforts to allow a smaller team to treat a larger community of patients with more intensive attention. As I review this book, shock waves about costs are threatening the very foundations of the Affordable Care Act. Massive losses by insurers and providers alike have led to the abandonment of Accountable Care Organizations by many who tried them. The recent bail-out by UnitedHealth was an ominous warning, eagerly jumped on by Fox News. Although other insurers issued assurances that they stay with the basic ACA program, most are reacting to the increased burden of caring for newly signed up patients by imposing insufferably high deductibles as well as extremely narrow networks of available providers. This turns the very people who should benefit from the ACA against the system.

There is nothing surprising about this development, which I have labeled a typical scam against consumers. If you sign up very sick people for insurance and don’t actually make them better, your costs will go up. T.R. Reid averred in his book The Healing of America: A Global Quest for Better, Cheaper, and Fairer Health Care that this is the sequence all countries have to follow: first commit to universal healthcare, then institute the efficiencies that keep costs under control. So why hasn’t that happened here?

Essentially, the health care system has failed us. Hospitals have failed to adopt the basic efficiency mechanisms used in other industries and still have trouble exchanging records or offering patients access to their data. A recent study finds that only 40% of physicians shared data within their own networks, and a measly 5% share data with providers outside their networks.

This is partly because electronic health records still make data exchange difficult, particularly with the all-important behavioral health clinics that can creat lifestyle changes in patients. Robust standards were never set up, leading to poor implementations. On top of that, usability is poor.

The federal government is well aware of the problem and has been pushing the industry toward more interoperability and patient engagement for years. But as health IT leader John Halamka explains, organizations are not ready for the necessary organizational and technological changes.

Although video interviews and home monitoring are finding footholds, the health industry is still characterized by hours of reading People magazine in doctors’ waiting rooms. The good news is that patients are open to mobile health innovations–the bad news is that most doctors are not.

The next section of this article will continue with lessons learned–and applied–both by Dr. Kvedar’s organization, Partners Connected Health, and by other fresh actors in the health care space.

We’re Hosting the #KareoChat and Discussing Value Based Care and ACOs – Join Us!

Posted on June 23, 2015 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

ACO and Value Based Reimbursement Twitter Chat
We’re excited to be hosting this week’s #KareoChat on Thursday, 6/25 at 9 AM PT (Noon ET) where we’ll be diving into the details around Value Based Care and ACOs. We’ll be hosting the chat from @ehrandhit and chiming in on occasion from @techguy and @healthcarescene as well.

The topic of value based care and ACOs is extremely important to small practice physicians since understanding and participating in it will be key to their survival. At least that’s my take. I look forward to hearing other people’s thoughts on these changes on Thursday’s Twitter chat. Here are the questions we’ll be discussing over the hour:

  1. What’s the latest trends in value based reimbursement that we should know or watch? #KareoChat
  2. Why or why aren’t you participating in an ACO? #KareoChat
  3. Describe the pros and cons you see with the change to value based reimbursement. #KareoChat
  4. What are you doing to prepare your practice for value based reimbursement and ACOs? #KareoChat
  5. Which technologies and applications will we need in a value based reimbursement and ACO world? #KareoChat
  6. What’s the role of small practices in a value based reimbursement world? Can they survive? #KareoChat

For those of you not familiar with a Twitter chat, you can follow the discussion on Twitter by watching the hashtag #KareoChat. You can also take part in the Twitter chat by including the #KareoChat hashtag in any tweets you send.

I look forward to “seeing” and learning from many of you on Twitter on Thursday. Feel free to start the conversation in the comments below as well.

Full Disclosure: Kareo is a sponsor of EMR and EHR.

Do We Want a Relationship With Our Doctor?

Posted on June 22, 2015 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

As is often the case, this weekend I was browsing Twitter. Many of the people and hashtags I follow are healthcare and health IT related. Many of the tweets related to the need to change the healthcare system. You know the usual themes: We pay too much for healthcare. We deserve better quality healthcare. We need to change the current healthcare system to be focused on the patient. Etc etc etc.

This wave of tweets ended with one that said “It’s all about the relationships.” I actually think the tweet had more to do with how a company was run, but in the beautiful world of Twitter you get to mesh ideas from multiple disciplines in the same Twitter stream (assuming you follow a good mix of people). I took the tweet and asked the question, “Do We Want a Relationship With Our Doctor?

If you’d asked me a year ago, I would have said, no! Why would I want a relationship with my doctor? I don’t want any relationship with my doctor, because that means that I’m sick and need him to fix something that’s wrong with me. I hope to never see my doctor. Doctor = Bad. Don’t even get me started with hospitals. If Doctor = Bad then Hospital > Doctor.

I’m personally still battling through a change in mindset. It’s not an easy change. It’s really hard to change culture. We have a hard core culture in America of healthcare being sick care. We all want to be healthy, but none of us want to be sick. Going to the doctor admits that we are sick and we don’t want anything to do with that. If we have an actual relationship with our doctor, then we must be really sick.

From the other perspective, do doctors want relationships with their patients? I’ve met some really jaded doctors who probably don’t, but most of the doctors I’ve met would love an actual, deep relationship with their patients. However, they all are asking the question, “How?” They still have to pay the bills, pay off their debts, etc. I don’t know many doctors who have reconciled these practical needs with the desire to have a relationship with their patients.

The closest I’ve seen is the direct primary care and concierge models. It’s still not clear to me that these options will scale across healthcare. Plus, what’s the solution for specialists? Will ACOs and Value Based Reimbursement get us there. I hear a lot of talk in this regard which scares me. Lots of talk without a clear path to results really scares me in healthcare.

What do you think? Do you want a relationship with your doctor? Do doctors want a relationship with their patients? What’s the path to making this a practical reality? Are you already practicing medicine where you have a deep, meaningful relationship with your patient? We’d love to hear your experience.

Assessment Released of Health Information Exchanges (Part 1 of 2)

Posted on January 6, 2015 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://radar.oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Like my Boston-area neighbors who perennially agonize over the performance of the Red Sox, healthcare advocates spend inordinate amounts of time worrying about Health Information Exchanges (HIEs). Will the current round of exchanges work after most previous attempts failed? What results can be achieved from the 564 million dollars provided by the Office of the National Coordinator since 2009? Has the effort invested by the government and companies in the Direct project paid off, and why haven’t some providers signed up yet?

I too was consumed by such thoughts when reading a reported contracted by the ONC and released in December, “HIE Program Four Years Later: Key Findings on Grantees’ Experiences from a Six-State Review. Although I found their complicated rating system a bit arbitrary, I found several insights in the 42-page report and recommend it to readers. I won’t try to summarize it here, but will use some of the findings to illuminate–and perhaps harp on–issues that come up repeatedly in the HIE space.
Read more..

Looking Back at 2014: Thermidor for Health Care Reform?

Posted on December 29, 2014 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://radar.oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

As money drains out of health care reform, there are indications that the impetus for change is receding as well. Yet some bright spots in health IT remain, so it’s not yet time to announce a Thermidor–the moment when a revolution is reversed and its leaders put to the guillotine. Let’s look back a bit at what went right and wrong in 2014.
Read more..

Which Comes First in Accountable Care: Data or Patients?

Posted on September 30, 2014 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://radar.oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The headlines are stark and accusatory. “ACOs’ health IT capabilities remain rudimentary.” “ACOs held back by poor interoperability.” But a recent 19-page survey released by the eHealth Initiative tells two stories about Accountable Care Organizations–and I find the story about interoperability less compelling than another one that focuses on patient empowerment.
Read more..

Are Limited Networks Necessary to Reduce Health Care Costs?

Posted on September 10, 2014 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://radar.oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Among the dirty words most hated by health care consumers–such as “capitation” and “insufficient medical necessity”–a special anxiety infuses the term “out-of-network.” Everybody harbors the fear that the world-famous specialist who can provide a miracle cure for a rare disease he or she may unexpectedly suffer from will be unavailable due to insurance limitations. So it’s worth asking whether limited networks save money, and whether they improve or degrade health care.
Read more..