Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and EHR for FREE!

Harvard Law Conference Surveys Troubles With Health Care

Posted on March 30, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

It is salubrious to stretch oneself and regularly attend a conference in a related field. At the Petrie-Flom Center for Health Law Policy, Biotechnology, and Bioethics, one can bask in the wisdom of experts who are truly interdisciplinary (as opposed to people like me, who is simply undisciplined). Their Tenth Anniversary Conference drew about 120 participants. The many topics–which included effects of the Supreme Court rulings on the Affordable Care Act and other cases, reasons that accountable care and other efforts haven’t lowered costs, stresses on the pharmaceutical industry, and directions in FDA regulation–contained several insights for health IT professionals.

From my perspective, the center of the conference was the panel titled “Health Innovation Policy and Regulating Novel Technology.” A better title might have been “How to Make Pharma Profitable Again,” because most of the panelists specialized in pharmaceuticals or patents. They spun out long answers to questions about how well patents can protect innovation (recognizing a controversy); the good, the bad, and the ugly of pricing; and how to streamline clinical trials, possibly adding risk. Their pulses really rose when they were asked a question about off-label drug use. But they touched on health IT and suggested many observations that could apply to it as well.

It is well known that drug development and regulatory approval take years–perhaps up to 20 years–and that high-tech companies developing fitness devices or software apps have a radically different product cycle. As one panelist pointed out, it would kill innovation to require renewed regulatory approval for each software upgrade. He suggested that the FDA define different tiers of changes, and that minor ones with little risk of disrupting care be allowed automatically.

I look even farther. It is well known also that disruptive inventions displace established technologies. Just as people with mobile devices get along without desktop computers and even TV sets, medicines have displaced many surgical procedures. Now the medicines themselves (particularly, controversial mental health medicines) can sometimes be replaced by interactive apps and online services. Although rigorous testing is still lacking for most of these alternatives, the biggest barrier to their adoption is lack of reimbursement in our antiquated health payment system.

Instead of trying to individually fix each distortion in payment, value-based care is the reformer’s solution to the field’s inefficient use of treatment options. Value-based care requires more accurate information on quality and effectiveness, as I recently pointed out. And this in turn may lead to the more flexible regulations suggested by the panelist, with a risk that is either unchanged or raised by an amount we can tolerate.

Comparisons between information and other medical materials can be revealing. For instance, as the public found out in the Henrietta Lacks controversy, biospecimens are treated as freely tradable information (so long as the specimen is de-identified) with no patient consent required. It’s assumed that we should treat de-identified patient information the same way, but in fact there’s a crucial difference. No one would expect the average patient to share and copy his own biospecimens, but doing so with information is trivially easy. Therefore, patients should have more of a say about how their information is used, even if biospecimens are owned by the clinician.

Some other insights I picked up from this conference were:

  • Regulations and policies by payers drive research more than we usually think. Companies definitely respond to what payers are interested in, not just to the needs of the patients. One panelist pointed out that the launch of Medicare Part D, covering drugs for the first time, led to big new investments in pharma.

  • Hotels and other service-oriented industries can provide a positive experience efficiently because they tightly control the activities of all the people they employ. Accountable Care Organizations, in contrast, contain loose affiliations and do not force their staff to coordinate care (even though that was the ideal behind their formation), and therefore cannot control costs.

  • Patents, which the pharma companies consider so important to their business model, are not normally available to diagnostic tests. (The attempt by Myriad Genetics to patent the BRACA1 gene in order to maintain a monopoly over testing proves this point: the Supreme Court overturned the patent.) However, as tests get more complex, the FDA has started regulating them. This has the side effect of boosting the value of tests that receive approval, an advantage over competitors.

Thanks to Petrie-Flom for generously letting the public in on events with such heft. Perhaps IT can make its way deeper into next year’s conference.

Randomized Controlled Trials and Longitudinal Analysis for Health Apps at Twine Health (Part 2 of 2)

Posted on February 18, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The previous section of this article described the efforts of Dr. John Moore of Twine Health to rigorously demonstrate the effectiveness of a digital health treatment platform. As Moore puts it, Twine Health sought out two of the most effective treatment programs in the country–both Harvard’s diabetes treatment and MGH’s hypertension treatment are much more effective than the standard care found around the country–and then used their most effective programs for the control group of patients. The control group used face-to-face visits, phone calls, and text messages to keep in touch with their coaches and discuss their care plans.

The CollaboRhythm treatment worked markedly better than these exemplary programs. In the diabetes trial, they achieved a 3.2% reduction in diabetic patients’ A1C levels over three months (the control group achieved 2.0%). In the hypertension trial, 100% of patients reached a controlled blood pressure of less than 140/90 and the average reduction in blood pressure was 26mmHg (the control group had an average 16mmHg reduction and fewer than one-third of the patients went down less than 140/90).

What clinical studies can and cannot ensure

I see a few limitations with these clinical studies:

  • The digital program being tested combines several different intervention, as described before: reminders, messaging, virtual interactions, reports, and so on. Experiments show that all these things work together. But one can’t help wondering: what if you took out some time-consuming interaction? Could the platform be just as successful? But testing all the options would lead to a combinatorial explosion of tests.

    It’s important that interventions by coaches started out daily but decreased over the course of the study as the patient became more familiar and comfortable with the behavior called for in the care plans. The decrease in support required from the human coach suggests that the benefits are sustainable, because the subjects are demonstrating they can do more and more for themselves.

  • Outcomes were measured over short time frames. This is a perennial problem with clinical studies, and was noted as a problem in the papers. The researchers will contact subjects in about a year to see whether the benefits found in the studies were sustained. Even one year, although a good period to watch to see whether people bounce back to old behaviors, isn’t long enough to really tell the course of chronic illness. On the other hand, so many other life events intrude over time that it’s unfair to blame one intervention for what happens after a year.

  • Despite the short time frame for outcomes, the studies took years to set up, complete, and publish. This is another property of research practice that adds to its costs and slows down the dissemination of best practices through the medical field. The time frames involved explain why the researchers’ original Media Lab app was used for studies, even though they are now running a company on a totally different platform built on the same principles.

  • These studies also harbor all the well-known questions of external validity faced by all studies on human subjects. What if the populations at these Boston hospitals are unrepresentative of other areas? What if an element of self-selection skewed the results?

Bonnie Feldman, DDS, MBA, who went from dentistry to Wall Street and then to consulting in digital health, comments, “Creating an evidence base requires a delicate balancing act, as you describe, when technology is changing rapidly. Right now, chronic disease, especially autoimmune disease is affecting more young adults than ever before. These patients are in desperate need of new tools to support their self-care efforts. Twine’s early studies validate these important advances.”

Later research at Twine Health

Dr. Moore and his colleagues took stock of the tech landscape since the development of CollaboRhythm–for instance, the iPhone and its imitators had come out in the meantime–and developed a whole new platform on the principles of CollaboRhythm. Twine Health, of which Moore is co-founder and CEO, offers a platform based on these principles to more than 1,000 patients. The company expects to expand this number ten-fold in 2016. In addition to diabetes and hypertension, Twine Health’s platform is used for a wide range of conditions, such as depression, cholesterol control, fitness, and diet.

With a large cohort of patients to draw on, Twine Health can do more of the “big data” analysis that’s popular in the health care field. They don’t sponsor randomized trials like the two studies cited early, but they can compare patients’ progress to what they were doing before using Twine Health, as well as to patients who don’t use Twine Health. Moore says that results are positive and lasting, and that costs for treatment drop one-half to two-thirds.

Clinical studies bring the best scientific methods we know to validating health care apps. They are being found among a small but growing number of app developers. We still don’t know what the relation will be between randomized trials and the longitudinal analysis currently conducted by Twine Health; both seem of vital importance and they will probably complement each other. This is the path that developers have to take if they are to make a difference in health care.

Randomized Controlled Trials and Longitudinal Analysis for Health Apps at Twine Health (Part 1 of 2)

Posted on February 17, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Walking into a restaurant or a bus is enough to see that any experience delivered through a mobile device is likely to have an enthusiastic uptake. In health care, the challenge is to find experiences that make a positive difference in people’s lives–and proving it.

Of course, science has a time-tested method for demonstrating the truth of a proposition: randomized tests. Reproducibility is a big problem, admittedly, and science has been shaken by the string of errors and outright frauds perpetrated in scientific journals. Still, knowledge advances bit by bit through this process, and the goal of every responsible app developer in the health care space is the blessing offered by a successful test.

Consumer apps versus clinical apps

Most of the 165,000 health apps will probably always be labeled “consumer” apps and be sold without the expense of testing. They occupy the same place in the health care field as the thousands of untested dietary supplements and stem cell injection therapies whose promise is purely anecdotal. Consumer anger over ill-considered claims have led to lawsuits against the Fitbit device manufacturer and Lumosity mental fitness app, leading to questions about the suitability of digital fitness apps for medical care plans.

The impenetrability of consumer apps to objective judgment comes through in a recent study from the Journal of Medical Internet Research (JMIR) that asked mHealth experts to review a number of apps. The authors found very little agreement about what makes a good app, thus suggesting that quality cannot be judged reliably, a theme in another recent article of mine. One might easily anticipate that subjective measures would produce wide variations in judgment. But in fact, many subjective measures produced more agreement (although not really strong agreement) than more “objective” measures such as effectiveness. If I am reading the data right, one of the measures found to be most unreliable was one of the most “objective”: whether an app has been tested for effectiveness.

Designing studies for these apps is an uncertain art. Sometimes a study may show that you don’t know what to measure or aren’t running the study long enough. These possible explanations–gentler than the obvious concern that maybe fitness devices don’t achieve their goals–swirl about the failure of the Scripps “Wired for Health” study.

The Twine Health randomized controlled trials

I won’t talk any more about consumer apps here, though–instead I’ll concentrate on apps meant for serious clinical use. What can randomized testing do for these?

Twine Health and MIT’s Media Lab took the leap into rigorous testing with two leading Boston-area partners in the health care field: a diabetes case study with the Joslin Diabetes Center and a hypertension case study with Massachusetts General Hospital. Both studies compared a digital platform for monitoring and guiding patients with pre-existing tools such as face-to-face visits and email. Both demonstrated better results through the digital platform–but certain built-in limitations of randomized studies leave open questions.

When Dr. John Moore decided to switch fields and concentrate on the user experience, he obtained a PhD at the Media Lab and helped develop an app called CollaboRhythm. He then used it for the two studies described in the papers, while founding and becoming CEO of Twine Health. CollaboRhythm is a pretty comprehensive platform, offering:

  • The ability to store a care plan and make it clear to the user through visualizations.

  • Patient self-tracking to report taking medications and resulting changes in vital signs, such as glycemic levels.

  • Visualizations showing the patient her medication adherence.

  • Reminders when to take medication and do other aspects of treatment, such as checking blood pressure.

  • Inferences about diet and exercise patterns based on reported data, shown to the patient.

  • Support from a human coach through secure text messages and virtual visits using audio, video, and shared screen control.

  • Decision support based on reported vital statistics and behaviors. For instance, when diabetic patients reported following their regimen but their glycemic levels were getting out of control, the app could suggest medication changes to the care team.

The collection of tools is not haphazard, but closely follows the modern model of digital health laid out by the head of Partners Connected Health, Joseph Kvedar, in his book The Internet of Healthy Things (which I reviewed at length). As in Kvedar’s model, the CollaboRhythm interventions rested on convenient digital technologies, put patients’ care into their own hands, and offered positive encouragement backed up by clinical staff.

As an example of the patient empowerment, the app designers deliberately chose not to send the patient an alarm if she forgets her medication. Instead, the patient is expected to learn and adopt responsibility over time by seeing the results of her actions in the visualizations. In exit interviews, some patients expressed appreciation for being asked to take responsibility for their own health.

The papers talk of situated learning, a classic education philosophy that teaches behavior in the context where the person has to practice the behavior, instead of an artificial classroom or lab setting. Technology can bring learning into the home, making it stick.

There is also some complex talk of the relative costs and time commitments between the digital interventions and the traditional ones. One important finding is that app users expressed significantly better feelings about the digital intervention. They became more conscious of their health and appreciated being able to be part of decisions such as changing insulin levels.

So how well does this treatment work? I’ll explore that tomorrow in the next section of this article, along with strengths and weaknesses of the studies.

Open Standards Advance in Health Care Through the Appeal of FHIR and SMART

Posted on October 13, 2014 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The poor state of interoperability between EHRs–target of fulminations and curses from health care activists over the years–is starting to grind its way forward. Dr. Kenneth Mandl, a leader of the SMART Platform and professor at the Boston Children’s Hospital Informatics Program, found that out when his team, including lead architect Josh Mandel, went to HIMSS this year to support Cerner’s implementation of his standard, and discovered three other vendors running it.

That’s the beauty of open source and standards. Put them out there and anyone can use them without a by-your-leave. Standards can diffuse in ways the original developers never anticipated.

A bit of background. The SMART platform, which I covered a few years ago, was developed by Mandl’s team at Harvard Medical School and Children’s Hospital to solve the festering problem of inaccessibility in EHRs and other health care software. SMART fulfilled the long-time vision of open source advocates to provide a common platform for every vendor that chose to support it, and that would allow third-party developers to create useful applications.

Without a standard, third-party developers were in limbo. They had to write special code to support each EHR they want to run on. Worse still, they may have to ask the EHR vendor for permission to connect. This has been stunting the market for apps expanding the use of patient data by clinicians as well as the patients themselves.

SMART’s prospects have been energized by the creation of a modern interoperability resource called FHIR. It breaks with the traditional health care standards by being lean, extendible in controllable ways, and in tune with modern development standards such as REST and JSON.

It helps that SMART was supported by funds from the ONC, and that FHIR was adopted by the leading health care standards group, HL7. HL7’s backing of FHIR in particular lent these standards authority among the vendor and health care provider community. Now the chocolate and peanut butter favored by health IT advocates have come together in the SMART on FHIR project, which I wrote about earlier this year.

Mandl explains that SMART allows innovators to get access to the point of care. As more organizations and products adopt the SMART on FHIR, API, a SMART app written once will run anywhere.

Vendors have been coming to FHIR meetings and expressing approval in the abstract for these standards. But it was still a pleasant surprise for Mandl to hear of SMART implementations demo’d at HIMSS by Intermountain, Hewlett-Packard, and Harris as well as Cerner.

The SMART project has just released guidlines for health care providers who want to issue RFPs soliciting vendors for SMART implementations. This will help ensure that providers get what they ask and pay for: an API that reliably runs any app written for SMART.

It’s wise to be cautious and very specific when soliciting products based on standards. The notion of “openness” is often misunderstood and taken to places it wasn’t meant to go. In health care, one major vendor can trumpet its “openness” while picking and choosing which vendors to allow use of its API, and charging money for every document transferred.

The slipperiness of the “open” concept is not limited to health IT. For years, Microsoft promulgated an “open source” initiative while keeping to the old proprietary practices of exerting patent rights and restricting who had access to code. Currently they have made great progress and are a major contributor to Linux and other projects, including tools used with their HealthVault PHR.

Google, too, although a major supporter of open source projects, plays games with its Android platform. The code is nominally under an open license–and is being exploited by numerous embedded systems developers that way–but is developed in anything but an open manner at Google, and is hedged by so many requirements that it’s hard to release a product with the Android moniker unless one partners closely with Google.

After talking to Mandl, I had a phone interview with Stan Huff, Chief Informatics Officer for Intermountain. Huff is an expert in interoperability and active in HL7. About a year ago he led an effort at Intermountain to improve interoperability. The motivation was not some ethereal vision of openness but the realization that Intermountain couldn’t do everything it needed to be competitive on its own–it would have to seek out the contributions of outsiders.

When Intermountain partnered with Cerner, senior management had by that time received a good education in the value of a standard API. Cerner was also committed to it, luckily, and the two companies collaborated on FHIR and SMART. Cerner’s task was to wrap their services in a FHIR-compliant API and to make sure to use standard technology, such as in codes for lab data.

Intermountain also participated in launching a not-for-profit corporation, the Healthcare Services Platform Consortium, that promotes SMART-on-FHIR and other standards. A lot of vendors have joined up, and Huff encourages other vendors to give up their fears that standardization is a catheter siphoning away business and to try the consortium out.

Intermountain currently is offering several applications that run in web browsers (and therefore should be widely usable on different platforms). Although currently in the prototype stage, the applications should be available later this year. Besides an application developed by Intermountain to monitor hemolytic disease among neonates and suggest paths for doctors to take, they support several demonstration apps produced by the SMART project, including a growth chart app, a blood pressure management app, and a cardiovascular app.

Huff reports that apps are easy to build on SMART. In at least one case, it took just two weeks for the coding.

Attendees at HIMSS were very excited about Intermountain’s support for SMART. The health care providers want more flexible and innovative software with good user interfaces, and see SMART providing that. Many vendors look to replicate what Intermountain has done (although some hold back). Understanding that progress is possible can empower doctors and advocates to call for more.