Free EMR Newsletter Want to receive the latest news on EMR, Meaningful Use, ARRA and Healthcare IT sent straight to your email? Join thousands of healthcare pros who subscribe to EMR and EHR for FREE!

Our Uncontrolled Health Care Costs Can Be Traced to Data and Communication Failures (Part 2 of 2)

Posted on April 13, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

The previous section of this article provided whatever detail I could find on the costs of poor communications and data exchange among health care providers. But in truth, it’s hard to imagine the toll taken by communications failures beyond certain obvious consequences, such as repeated tests and avoidable medical errors. One has to think about how the field operates and what we would be capable of with proper use of data.

As patients move from PCP to specialist, from hospital to rehab facility, and from district to district, their providers need not only discharge summaries but intensive coordination to prevent relapses. Our doctors are great at fixing a diabetic episode or heart-related event. Where we fall down is on getting the patient the continued care she needs, ensuring she obtains and ingests her medication, and encouraging her to make the substantial life-style changes that can prevent reoccurrences. Modern health really is all about collaboration–but doctors are decades behind the times.

Clinicians were largely unprepared to handle the new patients brought to them by the Affordable Care Act. Examining the impact of new enrollees, who “have higher rates of disease and received significantly more medical care,” an industry spokesperson said, “The findings underscore the need for all of us in the health care system, and newly insured consumers, to work together to make sure that people get the right health care service in the right care setting and at the right time…Better communication and coordination is needed so that everyone understands how to avoid unnecessary emergency room visits, make full use of primary care and preventive services and learn how to properly adhere to their medications.” Just where the health providers fall short.

All these failures to communicate may explain the disappointing performance of patient centered medical homes and Accountable Care Organizations. While many factors go into the success or failure of such complex practices, a high rate of failure suggests that they’re not really carrying out the coordinated care they were meant to deliver. Naturally, problems persist in getting data from one vendor’s electronic health record to another.

Urgent care clinics, and other alternative treatment facilities offered in places such as pharmacies, can potentially lower costs, but not if the regular health system fails to integrate them.

Successes in coordinated care show how powerful it can be. Even so simple a practice as showing medical records to patients can improve care, but most clinicians still deny patients access to their data.

One care practice drastically lowered ER admissions through a notably low-tech policy–refering their patients to a clinic for follow-up care. This is only the beginning of what we could achieve. If modern communications were in place, hospitals would be linked so that a CDC warning could go to all of them instantly. And if clinicians and their record systems were set up to handle patient-generated data, they could discover a lot more about the patients and monitor behavior change.

How are the hospitals and clinics responding to this crisis and the public pressure to shape up? They push back as if it was not their problem. They claim they are moving toward better information sharing and teamwork, but never get there.

One of their favorite gambits is to ask the government to reward them for achieving interoperability 90 days out of the year. They make this request with no groveling, no tears of shame, no admission that they have failed in their responsibility to meet reasonable goals set seven years ago. If I delivered my projects only 25% of the time, I’d have trouble justifying myself to my employer, especially if I received my compensation plan seven years ago. Could the medical industry imagine that it owes us a modicum of effort?

Robert Schultz, a writer and entrepreneur in health care, says, “Underlying the broken communications model is a lack of empathy for the ultimate person affected–the patient. Health care is one of the few industries where the user is not necessarily the party paying for the product or service. Electronic health records and health information exchanges are designed around the insurance companies, accountable care organizations, or providers, instead of around understanding the challenges and obstacles that patients face on a daily basis. (There are so many!) The innovators who understand the role of the patient in this new accountable care climate will be winners. Those who suffer from the burden of legacy will continue to see the same problems and will become eclipsed by other organizations who can sustain patient engagement and prove value within accountable care contracts.”

Alternative factors

Of course, after such a provocative accusation, I should consider the other contributors that are often blamed for increasing health care costs.

An aging population

Older people have more chronic diseases, a trend that is straining health care systems from Cuba to Japan. This demographic reality makes intelligent data use even more important: remote monitoring for chronic conditions, graceful care transitions, and patient coordination.

The rising cost of drugs

Dramatically increasing drug prices are certainly straining our payment systems. Doctors who took research seriously could be pushing back against patient requests for drugs that work more often in TV ads than in real life. Doctors could look at holistic pain treatments such as yoga and biofeedback, instead of launching the worst opiate addiction crisis America has ever had.

Government bureaucracy

This seems to be a condition of life we need to deal with, like death and taxes. True, the Centers for Medicare & Medicaid Services (CMS) keeps adding requirements for data to report. But much of it could be automated if clinical settings adopted modern programming practices. Furthermore, this data appears to be a burden only because it isn’t exploited. Most of it is quite useful, and it just takes agile organizations to query it.

Intermediaries

Reflecting the Byzantine complexity of our payment systems, a huge number of middlemen–pharmacy benefits managers, medical billing clearinghouses, even the insurers themselves–enter the system, each taking its cut of the profits. Single-payer insurance has long been touted as a solution, but I’d rather push for better and cheaper treatments than attack the politically entrenched payment system.

Under-funded public health

Poverty, pollution, stress, and other external factors have huge impacts on health. This problem isn’t about clinicians, of course, it’s about all of us. But clinicians could be doing more to document these and intervene to improve them.

Clinicians like to point to barriers in their way of adopting information-based reforms, and tell us to tolerate the pace of change. But like the rising seas of climate change, the bite of health care costs will not tolerate complacency. The hard part is that merely wagging fingers and imposing goals–the ONC’s primary interventions–will not produce change. I think that reform will happen in pockets throughout the industry–such as the self-insured employers covered in a recent article–and eventually force incumbents to evolve or die.

The precision medicine initiative, and numerous databases being built up around the country with public health data, may contribute to a breakthrough by showing us the true quality of different types of care, and helping us reward clinicians fairly for treating patients of varying needs and risk. The FHIR standard may bring electronic health records in line. Analytics, currently a luxury available only to major health conglomerates, will become more commoditized and reach other providers.

But clinicians also have to do their part, and start acting like the future is here now. Those who make a priority of data sharing and communication will set themselves up for success long-term.

Our Uncontrolled Health Care Costs Can Be Traced to Data and Communication Failures (Part 1 of 2)

Posted on April 12, 2016 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

A host of scapegoats, ranging from the Affordable Care Act to unscrupulous pharmaceutical companies, have been blamed for the rise in health care costs that are destroying our financial well-being, our social fabric, and our political balance. In this article I suggest a more appropriate target: the inability of health care providers to collaborate and share information. To some extent, our health care crisis is an IT problem–but with organizational and cultural roots.

It’s well known that large numbers of patients have difficulty with costs, and that employees’ share of the burden is rising. We’re going to have to update the famous Rodney Dangerfield joke:

My doctor said, “You’re going to be sick.” I said I wanted a second opinion. He answered, “OK, you’re going to be poor too.”

Most of us know about the insidious role of health care costs in holding down wages, in the fight by Wisconsin Governor Scott Walker over pensions that tore the country apart, in crippling small businesses, and in narrowing our choice of health care providers. Not all realize, though, that the crisis is leaching through the health care industry as well, causing hospitals to fail, insurers to push costs onto subscribers and abandon the exchanges where low-income people get their insurance, co-ops to close, and governments to throw people off of subsidized care, threatening the very universal coverage that the ACA aimed to achieve.

Lessons from a ground-breaking book by T.R. Reid, The Healing of America, suggests that we’re undergoing a painful transition that every country has traversed to achieve a rational health care system. Like us, other countries started by committing themselves to universal health care access. This then puts on the pressure to control costs, as well as the opportunities for coordination and economies of scale that eventually institute those controls. Solutions will take time, but we need to be smart about where to focus our efforts.

Before even the ACA, the 2009 HITECH act established goals of data exchange and coordinated patient care. But seven years later, doctors still lag in:

  • Coordinating with other providers treating the patients.

  • Sending information that providers need to adequately treat the patients.

  • Basing treatment decisions on evidence from research.

  • Providing patients with their own health care data.

We’ll look next at the reports behind these claims, and at the effects of the problems.

Why doctors don’t work together effectively

A recent report released by the ONC, and covered by me in a recent article, revealed the poor state of data sharing, after decades of Health Information Exchanges and four years of Meaningful Use. Health IT observers expect interoperability to continue being a challenge, even as changes in technology, regulations, and consumer action push providers to do it.

If merely exchanging documents is so hard–and often unachieved–patient-focused, coordinated care is clearly impossible. Integrating behavioral care to address chronic conditions will remain a fantasy.

Evidence-based medicine is also more of an aspiration than a reality. Research is not always trustworthy, but we must have more respect for the science than hospitals were found to have in a recent GAO report. They fail to collect data either on the problems leading to errors or on the efficacy of solutions. There are incentive programs from payers, but no one knows whether they help. Doctors are still ordering far too many unnecessary tests.

Many companies in the health analytics space offer services that can bring more certainty to the practice of medicine, and I often cover them in these postings. Although increasingly cited as a priority, analytical services are still adopted by only a fraction of health care providers.

Patients across the country are suffering from disrupted care as insurers narrow their networks. It may be fair to force patients to seek less expensive providers–but not when all their records get lost during the transition. This is all too likely in the current non-interoperable environment. Of course, redundant testing and treatment errors caused by ignorance could erase the gains of going to low-cost providers.

Some have bravely tallied up the costs of waste and lack of care coordination in health care. Some causes, such as fraud and price manipulation, are not attributable to the health IT failures I describe. But an enormous chunk of costs directly implicate communications and data handling problems, including administrative overhead. The next section of this article will explore what this means in day-to-day health care.

Clinical Decision Support Should Be Open Source

Posted on January 26, 2015 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Clinical decision support is a long-standing occupant of the medical setting. It got in the door with electronic medical records, and has recently received a facelift under the term “evidence based medicine.” We are told that CDS or EBM is becoming fine-tuned and energized through powerful analytics that pick up the increasing number of patient and public health data sets out in the field. But how does the clinician know that the advice given for a treatment or test is well-founded?

Most experts reaffirm that the final word lies with the physician–that each patient is unique, and thus no canned set of rules can substitute for the care that the physician must give to a patient’s particular conditions (such as a compromised heart or a history of suicidal ideation) and the sustained attention that the physician must give to the effects of treatment. Still, when the industry gives a platform to futurists such as Vinod Khosla who suggest that CDS can become more reliable than a physician’s judgment, we have to start demanding a lot more reliability from the computer.

It’s worth stopping a moment to consider the various inputs to CDS. Traditionally, it was based on the results of randomized, double-blind clinical trials. But these have come under scrutiny in recent years for numerous failings: the questionable validity of extending the results found on selected test subjects to a broader population, problems reproducing results for as many as three quarters of the studies, and of course the bias among pharma companies and journals alike for studies showing positive impacts.

More recently, treatment recommendations are being generated from “big data,” which trawl through real-life patient experiences instead of trying to isolate a phenomenon in the lab. These can turn up excellent nuggets of unexpected impacts–such as Vioxx’s famous fatalities–but suffer also from the biases of the researches designing the algorithms, difficulties collecting accurate data, the risk of making invalid correlations, and the risk of inappropriately attributing causation.

A third kind of computerized intervention has recently been heralded: IBM’s Watson. However, Watson does not constitute CDS (at least not in the demo I saw at HIMSS a couple years ago). Rather, Watson just does the work every clinician would ideally do but doesn’t have time for: it consults thousands of clinical studies to find potential diagnoses relevant to the symptoms and history being reported, and ranks these diagnoses by probability. Both of those activities hijack a bit of the clinician’s human judgment, but they do not actually offer recommendations.

So there are clear and present justifications for demanding that CDS vendors demonstrate its reliability. We don’t really know what goes into CDS and how it works. Meanwhile, doctors are getting sick and tired of bearing the liability for all the tools they use, and the burden of their malpractice insurance is becoming a factor in doctors leaving the field. The doctors deserve some transparency and auditing, and so do the patients who ultimately incorporate the benefits and risks of CDS into their bodies.

CDS, like other aspects of the electronic health records into which it is embedded, has never been regulated or subjected to public safety tests and audits. The argument trotted out by EHR vendors–like every industry–when opposing regulation is that it will slow down innovation. But economic arguments have fuzzy boundaries–one can always find another consideration that can reverse the argument. In an industry that people can’t trust, regulation can provide a firm floor on which a new market can be built, and the assurance that CDS is working properly can open up the space for companies to do more of it and charge for it.

Still, there seems to be a pendulum swing away from regulation at present. The FDA has never regulated electronic health records as it has other medical software, and has been carving out classes of medical devices that require little oversight. When it took up EHR safety last year, the FDA asked merely for vendors to participate voluntarily in a “safety center.”

The prerequisite for gauging CDS’s reliability is transparency. Specifically, two aspects should be open:

  • The vendor must specify which studies, or analytics and data sets, went into the recommendation process.

  • The code carrying out the recommendation process must be openly published.

These fundamentals are just the start of of the medical industry’s responsibilities. Independent researchers must evaluate the sources revealed in the first step and determine whether they are the best available choices. Programmers must check the code in the second step for accuracy. These grueling activities should be funded by the clinical institutions that ultimately use the CDS, so that they are on a firm financial basis and free from bias.

The requirement for transparent studies raises the question of open access to medical journals, which is still rare. But that is a complex issue in the fields of research and publishing that I can’t cover here.

Finally, an independent service has to collect reports of CDS failures and make them public, like the FDA Adverse Event Reporting System (FAERS) for drugs, and the FDA’s Manufacturer and User Facility Device Experience (MAUDE) for medical devices.

These requirements are reasonably light-weight, although instituting them will seem like a major upheaval to industries accustomed to working in the dark. What the requirements can do, though, is put CDS on the scientific basis it never has had, and push forward the industry more than any “big data” can do.

Apervita Creates Health Analytics for the Millions

Posted on January 9, 2015 I Written By

Andy Oram is an editor at O'Reilly Media, a highly respected book publisher and technology information provider. An employee of the company since 1992, Andy currently specializes in open source, software engineering, and health IT, but his editorial output has ranged from a legal guide covering intellectual property to a graphic novel about teenage hackers. His articles have appeared often on EMR & EHR and other blogs in the health IT space. Andy also writes often for O'Reilly's Radar site (http://oreilly.com/) and other publications on policy issues related to the Internet and on trends affecting technical innovation and its effects on society. Print publications where his work has appeared include The Economist, Communications of the ACM, Copyright World, the Journal of Information Technology & Politics, Vanguardia Dossier, and Internet Law and Business. Conferences where he has presented talks include O'Reilly's Open Source Convention, FISL (Brazil), FOSDEM, and DebConf.

Health officials are constantly talking up the importance of clinical decision support, more popularly known now as evidence-based medicine. We’re owning up to the awkward little fact–which really should embarrass nobody–that most doctors lack expertise on many of the conditions they encounter and can’t read the thousands of relevant studies published each year. New heuristics are developed all the time for things such as predicting cardiac arrest or preventing readmissions after surgery. But most never make their way into the clinic.

Let’s look at what has to happen before doctors and patients can benefit from a discovery:

  1. The researcher has to write a paper with enough detail to create a working program from the heuristic, and has to publish the paper, probably in an obscure journal.

  2. A clinician or administrator has to find the article and line up staff to write and thoroughly test a program.

  3. If the program is to be used outside the hospital where it was created, it has to be disseminated. The hospital is unlikely to have an organization set up to package and market the program. Even if it is simply put out for free use, other institutions have to learn about it and compile it to work on their systems, in order for it to spread widely. Neither the researcher nor the hospital is likely to be compensated for the development of the program.

  4. The program has to be integrated into the doctor’s workflow, by being put on a menu or generating an alert.

Evidence-based medicine, therefore, is failing to tap a lot of resources that could save lives. A commonly cited observation is that research findings take 17 years to go into widespread practice. That’s 17 years of unnecessary and costly suffering.

I have often advocated for better integration of analytics into everyday medical practice, and I found a company called Apervita (originally named Pervasive Health) that jumps off in the right direction. Apervita, which announced a Series A round of funding on January 7, also has potential users outside of clinical settings. Pharma companies can use it to track adverse drug events, while payers can use it to predict fraud and risks to patients. There is not much public health data in the platform yet, but they’re working on it. For instance, Leapfrog group has published hospital safety info through their platform, and Diameter Health provides an all-cause 30-day readmissions prediction for all non-maternal, non-pediatric hospitalizations.

Here’s how the sequence of events I laid out before would go using Apervita:

  1. The researcher implements her algorithm in Python, chosen because Python is easy for non-programmers to learn and is consequently one of the most popular programming languages, particularly in the sciences. Apervita adds functions to Python to make it easy, such as RangeCompute or tables to let you compute with coefficients, and presents these through an IDE.

  2. The researcher creates an analytic on the Apervita platform that describes and publishes the analytic, along with payment terms. Thus, the researcher derives some income from the research and has more motivation to offer the analytic publicly. Conversely, the provider pays only for usage of the analytic, and does not have to license or implement a new software package.

  3. Clinicians search for relevant analytics and upload data to generate reports at a patient or population level. Data in popular formats such as Excel or comma-separated value (CSV) files can be uploaded manually, while programmers can automate data exchange through a RESTful web service, which is currently the most popular way of exchanging data between cooperating programs. Rick Halton, co-founder and Chief Marketing Officer of Apervita, said they are working on support for HL7’s CCD, and are interested in Blue Button+ button, although they are not ready yet to support it.

  4. Clinicians can also make the results easy to consume through personalized dashboards (web pages showing visualizations and current information) or by triggering alerts. A typical dashboard for a hospital administrator might show a graphical thermometer indicating safety rankings at the hospital, along with numbers indicating safety grades. Each department or user could create a dashboard showing exactly what a clinician cares about at the moment–a patient assessment during an admission, or statistics needed for surgical pre-op, for instance.

  5. Apervita builds in version control, and can automatically update user sites with corrections or new versions.

I got a demo of Apervita and found the administration pretty complex, but this seems to be a result of its focus on security and the many options it offers large enterprises to break staff into groups or teams. The bottom line is that Apervita compresses the difficult processes required to turn research into practice and offers them as steps performed through a Web interface or easy programming. Apervita claims to have shown that one intern can create as many as 50 health analytics in one week on their platform, working just from the articles in journals and web resources.

The platform encrypts web requests and is HIPAA-compliant. It can be displayed off-platform, and has been integrated with at least one EHR (OpenMRS).

Always attuned to the technical difficulties of data use, I asked Halton how the users of Apervita analytics could make sure their data formats and types match the formats and types defined by the people who created the analytics. Halton said that the key was the recognition of different ontolgies, and the ability to translate between them using easy-to-create “codesets.”

An ontology is, in general, a way of representing data and the relationships between pieces of data. SNOMED and ICD are examples of common ontologies in health care. An even simpler ontology might simply be a statement that units of a particular data field are measured in milliliters. Whether simple or complex, standard or custom-built, the ontology is specified by the creator of an analytic. If the user has data in a different ontology, a codeset can translate between the two.

As an example of Apervita’s use, a forward prediction algorithm developed by Dr. Dana Edelson and others from the University of Chicago Medical Center can predict cardiac arrests better than the commonly used VitalPAC Early Warning Score (ViEWS) or Modified Early Warning Score (MEWS). Developed from a dataset of over 250,000 patient admissions across five hospitals, “eCART” (electronic Cardiac Arrest Triage) can identify high-risk hospital ward patients and improve ICU triage decisions, often as much as 48 hours in advance.

The new funding will allow Apervita to make their interface even easier for end-users, and to solicit algorithms from leading researchers such as the Mayo Clinic.

Halton heralds Apervita as a “community” for health care analytics for authors and providers. Not only can the creators of analytics share them, but providers can create dashboards or other tools of value to a wide range of colleagues, and share them. I believe that tools like Apervita can bridge the gap between the rare well-funded health clinic with the resources to develop tools, and the thousands of scattered institutions struggling to get the information that will provide better care.

What Will the Shifting Reimbursement Model Require?

Posted on July 29, 2014 I Written By

John Lynn is the Founder of the HealthcareScene.com blog network which currently consists of 10 blogs containing over 8000 articles with John having written over 4000 of the articles himself. These EMR and Healthcare IT related articles have been viewed over 16 million times. John also manages Healthcare IT Central and Healthcare IT Today, the leading career Health IT job board and blog. John is co-founder of InfluentialNetworks.com and Physia.com. John is highly involved in social media, and in addition to his blogs can also be found on Twitter: @techguy and @ehrandhit and LinkedIn.

I was really intrigued by this post on the First Databank blog titled “Making the Most of the Meaningful Use Extension.” Here’s an excerpt of the post that really struck me.

We are looking at an industry undergoing a change in the reimbursement model, from fee for service to a risk-based model. Therefore, our systems must support quality measure reporting, tracking of specific treatment responsibilities for improving outcomes, and they must provide health information to the patient that allows them to be an active participant in their care.

We have to incorporate access to the care guidelines and research that has been proven to provide the best outcomes. There are a number of areas where there is overwhelming evidence as to what is the best course of care for the patient. For reasons that sometimes escape me, providers often do not follow these best practices.

We’re absolutely going through a shifting reimbursement model. In this post, Tom Bizzaro outlines what he thinks is needed to be able to handle this changing reimbursement model. Do you agree with Tom’s ideas? Is there anything he missed?

The last part of the above quote really hit me since I’ve seen the same thing. I don’t think we’re going to do much to change people who choose to go against evidence based medicine. However, I do think there’s a great opportunity for technology to more quickly diffuse the evidence based practices throughout the medical profession. While some people ignore best practices, I think the bigger problem is that there is just so much information out there that it’s hard for healthcare professionals to keep up to date.

This is just one example of how technology is going to improve patient care. Plus, I believe access to the best information at the point of care is going to be an essential part of the changing reimbursement model. This is just one reason why I don’t think you’ll be able to practice medicine without technology in the future.